skip to main content


Search for: All records

Creators/Authors contains: "Ding, Yuchen"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. 3D printing allows for moldless fabrication of continuous fiber composites with high design freedom and low manufacturing cost per part, which makes it particularly well-suited for rapid prototyping and composite product development. Compared to thermal-curable resins, UV-curable resins enable the 3D printing of composites with high fiber content and faster manufacturing speeds. However, the printed composites exhibit low mechanical strength and weak interfacial bonding for high-performance engineering applications. In addition, they are typically not reprocessable or repairable; if they could be, it would dramatically benefit the rapid prototyping of composite products with improved durability, reliability, cost savings, and streamlined workflow. In this study, we demonstrate that the recently emerged two-stage UV-curable resin is an ideal material candidate to tackle these grand challenges in 3D printing of thermoset composites with continuous carbon fiber. The resin consists primarily of acrylate monomers and crosslinkers with exchangeable covalent bonds. During the printing process, composite filaments containing up to 30.9% carbon fiber can be rapidly deposited and solidified through UV irradiation. After printing, the printed composites are subjected to post-heating. Their mechanical stiffness, strength, and inter-filament bonding are significantly enhanced due to the bond exchange reactions within the thermoset matrix. Furthermore, the utilization of the two-stage curable resin enables the repair, reshaping, and recycling of 3D printed thermosetting composites. This study represents the first detailed study to explore the benefits of using two-stage UV curable resins for composite printing. The fundamental understanding could potentially be extended to other types of two-stage curable resins with different molecular mechanisms. 
    more » « less
    Free, publicly-accessible full text available September 27, 2024
  2. Abstract

    Covalent adaptable network (CAN) polymers doped with conductive nanoparticles are an ideal candidate to create reshapeable, rehealable, and fully recyclable electronics. On the other hand, 3D printing as a deterministic manufacturing method has a significant potential to fabricate electronics with low cost and high design freedom. In this paper, we incorporate a conductive composite consisting of polyimine CAN and multi-wall carbon nanotubes into direct-ink-writing 3D printing to create polymeric sensors with outstanding reshaping, repairing, and recycling capabilities. The developed printable ink exhibits good printability, conductivity, and recyclability. The conductivity of printed polyimine composites is investigated at different temperatures and deformation strain levels. Their shape-reforming and Joule heating-induced interfacial welding effects are demonstrated and characterized. Finally, a temperature sensor is 3D printed with defined patterns of conductive pathways, which can be easily mounted onto 3D surfaces, repaired after damage, and recycled using solvents. The sensing capability of printed sensors is maintained after the repairing and recycling. Overall, the 3D printed reshapeable, rehealable, and recyclable sensors possess complex geometry and extend service life, which assist in the development of polymer-based electronics toward broad and sustainable applications.

     
    more » « less
  3. Abstract

    Enzymatic Fisher‐Tropsch (FT) process catalyzed by vanadium (V)‐nitrogenase can convert carbon monoxide (CO) to longer‐chain hydrocarbons (>C2) under ambient conditions, although this process requires high‐cost reducing agent(s) and/or the ATP‐dependent reductase as electron and energy sources. Using visible light‐activated CdS@ZnS (CZS) core‐shell quantum dots (QDs) as alternative reducing equivalent for the catalytic component (VFe protein) of V‐nitrogenase, we first report a CZS : VFe biohybrid system that enables effective photo‐enzymatic C−C coupling reactions, hydrogenating CO into hydrocarbon fuels (up to C4) that can be hardly achieved with conventional inorganic photocatalysts. Surface ligand engineering optimizes molecular and opto‐electronic coupling between QDs and the VFe protein, realizing high efficiency (internal quantum yield >56 %), ATP‐independent, photon‐to‐fuel production, achieving an electron turnover number of >900, that is 72 % compared to the natural ATP‐coupled transformation of CO into hydrocarbons by V‐nitrogenase. The selectivity of products can be controlled by irradiation conditions, with higher photon flux favoring (longer‐chain) hydrocarbon generation. The CZS : VFe biohybrids not only can find applications in industrial CO removal for high‐value‐added chemical production by using the cheap, renewable solar energy, but also will inspire related research interests in understanding the molecular and electronic processes in photo‐biocatalytic systems.

     
    more » « less
  4. null (Ed.)